問題を入力...
線形代数 例
ステップ 1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 2
ステップ 2.1
をに書き換えます。
ステップ 2.2
群による因数分解。
ステップ 2.2.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 2.2.1.1
をで因数分解します。
ステップ 2.2.1.2
をプラスに書き換える
ステップ 2.2.1.3
分配則を当てはめます。
ステップ 2.2.2
各群から最大公約数を因数分解します。
ステップ 2.2.2.1
前の2項と後ろの2項をまとめます。
ステップ 2.2.2.2
各群から最大公約数を因数分解します。
ステップ 2.2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
方程式の両辺からを引きます。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
についてを解きます。
ステップ 2.5.2.1
方程式の両辺にを足します。
ステップ 2.5.2.2
の各項をで割り、簡約します。
ステップ 2.5.2.2.1
の各項をで割ります。
ステップ 2.5.2.2.2
左辺を簡約します。
ステップ 2.5.2.2.2.1
の共通因数を約分します。
ステップ 2.5.2.2.2.1.1
共通因数を約分します。
ステップ 2.5.2.2.2.1.2
をで割ります。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
ステップ 4.1
方程式の両辺にを足します。
ステップ 4.2
の各項をで割り、簡約します。
ステップ 4.2.1
の各項をで割ります。
ステップ 4.2.2
左辺を簡約します。
ステップ 4.2.2.1
の共通因数を約分します。
ステップ 4.2.2.1.1
共通因数を約分します。
ステップ 4.2.2.1.2
をで割ります。
ステップ 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 4.4
を簡約します。
ステップ 4.4.1
をに書き換えます。
ステップ 4.4.2
分子を簡約します。
ステップ 4.4.2.1
をに書き換えます。
ステップ 4.4.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.4.3
分母を簡約します。
ステップ 4.4.3.1
をに書き換えます。
ステップ 4.4.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.5.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 5
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 6